Scores
  • GMAT : Apoorva G 750
  • GMAT : Raghu V 700
  • GMAT : Mannik 730
  • GMAT : Arun J : 720
  • GMAT : N Teja : 680
  • GMAT : Kadambari K - 700
  • GMAT : Venkataraman Rajraman 760
  • GMAT : Darshan 730

GMAT PS version 2 question 2 (Updated On Wednesday, June 11, 2014)

John covers a certain distance at 60 mph. He reaches the destination 5  mins late . The next day, he covers the same distance at 80 mph. He now reaches 10 minutes early. What speed should he take to reach the destination, such that he reaches at the correct time? (In mph) 
1. 720 /11 2. 800/12 3.820/11 4.750/11             5. 650/11 
Method 1:
Distance =speed x time
If speed=60 mph, time = t+5/60
If speed=80 mph, time = t-10/60
The distance traveled is constant.
Distance  = 60 ( t+5/60) = 80( t- 10/60)       t= >55/60 = 11/12 
 substitute t in any one of the eq ; D = 60 ( 11/12 + 5/12) = 60 miles.
If D=60 m S=60 mph then t= 1 hour              If D=60 m, S =80 mph then t = 45 mins
So John takes 55 mins to reach 
             D = 60, t = 55,S = ?
                     60 = s x (55/60)
                      S =720 /11 mph
Method 2:
                     If S = 60 mph, Ram is 5 mins late
                     If S = 80 mph, Ram is 10 mins early
If D is the distance, Then D/ 60 D/80 = 15/ 60
D =60 m.
If  D = 60, and S =60 mph , Ram is 5 mins late, hence t =55 mins
                     60 = s x (55/60)
                      S =720 /11 mph


 

Happening now

Learning Videos

  Page No : 1
GMAT reading comprehension , a sneak peak